Fully Guided Tooth Bud Ablation in Pigs Results in Complete Tooth Bud Removal and Molar Agenesis

Q11

Leigh E. Colby, DDS, MBA, * and David P. Watson, MSME †

Purpose: Fully guided microwave tooth bud ablation has the potential to become a minimally invasive means for managing third molars in adolescent patients. If developed, this new modality could provide improved outcomes and reduced complications compared to traditional third molar management strategies. The purpose of this 28-day longitudinal characterization study was to determine if the healing response following fully guided microwave ablation of second molar tooth buds in juvenile pigs would result in the complete removal of targeted tooth bud tissues, molar agenesis, and no significant collateral tissue damage.

Methods: Investigators performed fully guided microwave ablation on 24 mandibular second molar tooth buds (#18 and #31) in seven-week-old pigs. Postablation healing assessment consisted of radio-graphic and histological evaluation of 3 subcohorts (consisting of 4 animals each) at 7-, 14- and 28-days post ablation. Controls were untreated, opposing maxillary second molar tooth buds. Neurological assessment was performed to determine if there was any detectible loss of inferior alveolar nerve function.

Results: Healing processes were nearly complete at 28 days post ablation. While one tooth bud was identified as partially ablated at 14 days post treatment, all treated tooth bud tissues were replaced with trabecular new bone formation by the end of this study. There was no detectible loss of inferior alveolar nerve function. The thermal dosing strategy used in this study appears to deliver prescribed ablation volumes and-within the context of this animal model-there was no detected collateral tissue damage.

Conclusions: The results of this study confirm the hypothesis that healing processes following fully guided tooth bud ablation resulted in removal of targeted tooth bud tissues, complete molar agenesis, and trabecular new bone growth at 28-days post treatment.

© 2022 Published by Elsevier Inc. on behalf of the American Association of Oral and Maxillofacial Surgeons

J Oral Maxillofac Surg ■:1-11, 2023

Removal of third molars (3M) is an invasive procedure with considerable surgical risk. The healing response following 3M removal is highly variable and adversely affected by uncontrollable conditions, such as age, degree of impaction, pathology associated with teeth to be extracted, patient health at the time of surgery, and noncompliance following surgery. Surgical extraction of 3Ms can lead to a wide range of complications, including protracted reductions in patient quality of life and chronic problems that can be difficult and expensive to resolve. To reduce problems following 3M surgery, extensive clinical research has been largely focused on mitigating the degree of trauma associated with removing these

28	*President and CEO, TriAgenics, Inc, Eugene, OR.	Address correspondence and reprint requests to Dr Colby: Presi-
	†Chief of Operations, TriAgenics, Inc.	dent and CEO, TriAgenics, Inc, 3758 Pine Canyon Drive, Eugene, OR
	Disclosures: Research performed in this Good Laboratory Prac-	97405-5869; e-mail: leighcolby@mail.com
	tices animal trial was funded by TriAgenics, Inc Leigh E. Colby is	Received September 20 2022
	president and CEO of the organization and Dave P. Watson is chief	Accepted December 11 2022
	of operations. TriAgenics is seeking the Food and DRUG Administra-	© 2022 Published by Elsevier Inc. on behalf of the American Association of Oral
	tion approval to conduct human clinical trials using the guided tooth	and Maxillofacial Surgeons
29	bud ablation procedure and technology described in this report.	0278-2391/22/01106-5
Q 2	Conflict of Interest Disclosures: Leigh E. Colby and David P. Wat-	https://doi.org/10.1016/i.ioms.2022.12.009
	son have relevant financial relationship(s) with a commercial inter-	leave and the second second second

teeth. While improved surgical technique or the use of autographs and pharmaceutical adjuvants appear to 114 result in more predictable outcomes, a wide range of 116 complications persist. Regardless of the long-standing controversy surrounding prophylactic removal of 118 3Ms, recent studies continue to demonstrate that 3M 119 removal at a young age-especially before problems 120 occur-remains the most effective approach to reduce surgical risk, reduce the severity of short-term complications, and improve long-term outcomes.¹⁻³

123 Those few individuals who do not develop 3Ms have 124an improved long-term oral health profile compared to 125 those who form these teeth. Development of a minimally invasive surgical technique that predictably in-126 duces 3M agenesis at an early age could provide 127 128 patients with the same improved health profile. Such 129 a preventative treatment will have significantly less 130 surgical risk and will eliminate postoperative discom-131 fort and complications associated with traditional 3M 132 management strategies.

133 Previous research demonstrates that fully guided microwave ablation of entire tooth bud volumes is 134135 possible. Gross visual assessment suggests that thermo-136 necrosis by this method appears to be limited to the bony crypt of treated tooth buds.⁴ Further refinement 137 138 of this treatment modality will determine whether 139 tooth bud tissue thermonecrosis will result in a predict-140able healing response. Research that includes histologic evaluation will also determine whether eradication of 141targeted tooth bud tissues can be achieved with no 142143 adverse effects on collateral tissues.

144The purpose of this 28-day longitudinal character-145 ization study was to test the hypothesis that the heal-146 ing response to fully-guided microwave ablation of 147 second molar tooth buds in juvenile pigs would result 148 in removal of targeted tooth bud tissues, molar agen-149 esis, and no significant collateral tissue damage. Radio-150 graphic and histologic assessments were used to 151 address the specific aims of this study.

The specific aims of this study were to

- 1) determine the efficacy of fully guided tooth bud ablation (TBA) for inducing molar agenesis;
- 2). determine whether the postablation healing process resulted in complete tooth bud tissue removal; and
- 3). determine whether the thermal dosing strategy employed resulted in ablation volumes that appeared to be consistent with prescribed ablation volumes.

Materials and Methods

STUDY DESIGN/SAMPLE

To address the research purpose, investigators designed and implemented a split-mouth animal study that compared mandibular second molar TBAs against unablated maxillary second molar tooth bud controls.

The study sample consisted of 12 juvenile Yorkshire-Cross domestic swine, sourced from Oak Hill Genetics, Ewing, IL. Enrolled subjects met prespecified inclusion and exclusion criteria based on age, sex, and health status. Subjects also had to pass an inferior alveolar nerve assessment. All subjects were 7 weeks of age at the time of treatment and were in good health. Each subject was 10 to 15 kg in weight. The study used female subjects exclusively because they are less aggressive to one another, and they are safer for staff to handle under laboratory conditions.

The investigators chose pigs as test subjects because the animals' tooth bud development resembles that of humans, both architecturally and histologically.⁵ Given their developmental, size, and shape similarities with human molar formation, the porcine 2nd molar mandibular tooth bud model was used. In humans, third molar TBA (3TBA) would likely be performed 03 at 8 to 10 years of age, before mineralized tooth structure is formed and complete bony encapsulation occurs.

This study took place in Fort Collins, CO, at CARE Research, LLC., in accordance with federal regulations for Good Laboratory Practices (GLP) 21CFR58 (Title 21 Code of Federal Regulations, Part 58). CARE is a 04 USDA-approved preclinical research laboratory. The investigators and CARE technicians conducted this GLP study with oversight from an independent quality manager. CARE Research obtained Institutional Animal Care and Use Committee (IACUC) review and approval prior to commencing this study. All subjects were housed, cared for, treated, and euthanized at CARE Research facilities as part of Study Protocol TA-1805 (CARE Research IACUC Number: 1837).

VARIABLES

The independent variable used in this study had 2 levels, which were used to compare an experimental treatment with a control treatment using a splitmouth model. The experimental level was fully guided TBA treatment applied to tissues inside radiographically observed bony crypts of mandibular tooth buds. The control level was no treatment to maxillary tooth buds.

The following were the study's 3 dependent variables:

- 1) The characterization of post treatment healing responses;
- 2) The level of formation of mineralized tooth structure following treatment; and
- 3) The observation for signs of collateral tissue damage.

113

115

117

121

122

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

181

182

183

184

185

186

187

188 189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

169

COLBY AND WATSON

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

331

332

333

334

335

336

Investigators used the following 4 criteria (coded using a scale of 0 to 3) to characterize the healing response of treated mandibular 2nd molar tooth buds and immediately adjacent tissues. Unablated upper arches served as controls.

0 = No Bony crypt; bone infill appears complete; no evidence of thermal damage of immediate adjacent tissues.

1 = Bony crypt reduced in size; bone infill progressing; no evidence of thermal damage of immediate adjacent tissues.

2 = Bony crypt unchanged; no bone infill evident; no evidence of thermal damage of immediate adjacent tissues.

3 = Bony crypt increased in size; no bone infill evident; evidence of thermal damage of immediate adjacent tissues.

Investigators used the following 4 evaluation criteria (coded using a scale of 0 to 3) to characterize the efficacy of cessation of mineralized tooth structure formation in the treated 2nd molar tooth buds. Unablated upper arches served as controls.

0 = No radiographic evidence of 2nd molar mineralized tooth structure formation.

1 = Minimal or trace level of detectable radiographic evidence of 2nd molar mineralized tooth structure formation.

2 = Moderate or intermediate level of detectable radiographic evidence of 2nd molar mineralized tooth structure formation with crown formation to be less than 50% complete.

3 = Advanced level of detectable radiographic evidence of 2nd molar mineralized tooth structure formation with enamel formation estimated to be 50% or more complete.

Ancillary variables, including sex, age, and weight of the subjects were held to a minimum. In addition, the design of all TBA guides and delivery of all treatments were limited to one operator.

DATA COLLECTION METHODS

Data collection was performed in accordance with recognized GLP standards. Treated mandibular tooth buds (n = 24) and untreated maxillary tooth buds (n = 24) were subjected to a peer-reviewed radiographic evaluation and an independent histological evaluation.

Healing response and/or the formation of mineralized tooth structure following ablation was characterized through radiographic and histological evaluation at 7-, 14-, and 28-days post treatment. Collateral tissue damage was characterized through radiographic, histological, and neurological evaluation at the same time intervals. Computed tomography (CT) scan evaluation forms were used to code the evaluation criteria outlined above. Evaluation forms and final reports were audited by the study quality manager.

DATA ANALYSES

This study included a peer review of CT images in parallel with an independent histopathology evaluation. The principal investigator and an independent dental reviewer conducted a radiographic characterization of treated and control sites using images from axial, coronal, and sagittal planes. The reviewers did not have access to the histology report until after radiographic assessments were complete.

As a characterization study (where the results were dichotomous, ie, tooth formation or no tooth formation), no formal statistical evaluation was performed other than to summarize findings in the form of average scores for assessment criteria scoring values. Where relevant, percentage values were reported to further summarize or highlight assessment scale scoring differences between study animals or study scientists.

STUDY PROCEDURES

This study began 1 day prior to TBA treatment. All the 12 test subjects received a neurological evaluation and cone-beam computed tomography (CBCT) imaging. CBCT scans were used to manufacture surgical guides for each animal in preparation for TBA procedures planned for the following day.

On the preoperation day, laboratory staff randomly assigned and attached animal identification ear tags to each test subject. Each animal was anesthetized with intramuscular (IM) Telazol (5.0 mg/kg), ketamine (2.0 mg/kg), and xylazine (1.0 mg/kg). Technicians administered approximately half of the IM anesthesia cocktail dose to prepare the animals for inferior alveolar nerve assessment. The sedative was delivered via IM injection into the subjects' gluteal muscle mass.

Approximately 3 to 5 minutes after receiving anesthesia, the subjects appeared calm and physically manageable. At this time, each study animal underwent a comparative neurological evaluation of their inferior alveolar nerve function. The upper and lower quadrants of the animals' lips were assessed bilaterally, with upper lips serving as a control. A sterile 27-gauge needle was used to superficially pierce the right and left sides of the lower lip. Similar pricks to the right and left sides of the upper lip were performed to check for any neurological asymmetries or deficits between the quadrants of the subject animals' lips. Any animal with a demonstrable sensory asymmetry or deficit would have been excluded from the study.

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

Upon completing the inferior alveolar nerve assessment, the remaining half-dose of IM anesthesia was administered, and each animal was intubated approximately 10 minutes later. Sedation was complemented with inhalation agents as needed. Once each animal was sufficiently sedated, CBCT scans of the mandible and maxilla were obtained to image 2nd molar tooth buds (#2, #15, #18, and #31). Mandibular quadrant dental impressions were then obtained, which included the right and left posterior deciduous teeth and retromolar soft tissues over the anterior aspect of the ramus. Fast-set polyvinylsiloxane dental impression material was used. The study animals were then placed into recovery and returned to holding pens once they adequately recovered.

Q6 The CT scans and polyvinyl siloxanedental impressions were used to design tooth-supported, quadrant surgical guides using CoDiagnostiX (Dental Wings, Inc) at a regional dental lab. Surgical guides were 3D printed overnight for the TBA surgery the next day.

THERMAL DOSING

This study used a specific thermal dosing strategy. The maximum diameters of the bony crypts of #18 and #31 were measured orthogonally in the rostral/ caudal, dorsal/ventral, and right/left dimensions using Blue Sky Plan. Investigators used these dimensions to determine the microwave energy dose for each targeted tooth bud. Each predetermined energy dose was expected to deliver a spherical zone of ablation that would extend 1 mm beyond the maximum observed diameter of each targeted tooth bud. TBA surgical guide reports generated by the dental lab recorded the TBA probe total insertion depth necessary to reach the center of ablation, and the length of the surgical guide pathway inside the TBA surgical guide.

TBA PROCEDURES

376 The following day, all 12 study animals were anes-377 thetized using the same anesthesiology and nerve 378 assessment protocols described above. Preoperative 379 photos were obtained prior to performing each TBA 380 procedure. Using the mandibular left and right TBA 381 surgical guides produced the previous day, the investi-382 gators created an osteotomy using a sterile 2 mm or-383 thopedic bone drill. The bone drill extended from 384 the anterior aspect of the ramus of the mandible 385 through the proximal wall of the targeted 2nd molar 386 tooth bud. After the bone drill was withdrawn, any 387 bone chips or other tissue debris was removed from 388 the TBA surgical guide. A TBA probe that was 2 mm 389 in diameter was immediately inserted into the TBA 390 guide to a depth that placed the center of ablation of 391 the TBA probe into the center of the targeted 2nd 392 molar tooth bud.

With the TBA probe fully seated in the surgical guide, the principal investigator delivered the prescribed microwave energy dose for each tooth bud that was expected to induce complete tooth bud thermonecrosis. In this study, 12 GHz microwave energy was applied using a proprietary microwave generator. Upon completion of mandibular left and right TBA procedures, intraoral photos of the TBA probe insertion sites were obtained and each animal was then placed in recovery and returned to holding pens once adequately recovered. Even though it was anticipated that test subjects would not experience significant postprocedure pain, all subjects received analgesics (meloxicam, 0.4 mg/kg) IM for 3 days post ablation.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

CLINICAL OBSERVATIONS PROTOCOL

As specified in the clinical observations protocol for this study, each animal was checked daily for facial abnormalities including swelling or bruising. Clinical observations included taking each subject's temperature daily and weight weekly.

PROCEDURES AT 7-, 14-, AND 28-DAYS POST ABLATION

At 7-, 14-, and 28-days post ablation, 4 randomly selected study animals received the same inferior alveolar nerve assessment described above. As before, upper and lower lips were tested bilaterally to determine the presence of any ablation-induced inferior alveolar nerve impairment. After completing nerve function assessments, the study animals were euthanized. Immediately following euthanasia, CBCT scans were obtained for radiographic assessment.

Once CBCT scans were obtained, each pig's head 431 was resected at the base of the skull and immersed 432 in formalin for approximately 15 minutes to prepare 433 the samples for shipping to a histopathology lab for 434 evaluation. Care was taken to ensure that the oral 435 cavity surfaces did not dry or become over hydrated. 436 437 Each head was placed in separate sealed plastic bags and then into a Styrofoam container with frozen gel 438ice packs to keep the specimens cool without 439 freezing them. The specimens were shipped via 440overnight first morning delivery to West Virginia Uni-441versity Pathology Laboratory for Translational Medi-442 cine, Morgantown. The histopathology assessment 443 444 was also conducted in accordance with GLP regulations. Complete documentation was included with 445 the shipments to preserve the chain of custody 446 upon receipt by the West Virginia University 447 448pathologist.

Results

449 450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

INFERIOR ALVEOLAR NERVE ASSESSMENT

During this study, 12 pigs were screened for eligibility based on age, sex, and health status. The final sample was composed of 12 female subjects that were all 7 weeks old at the time of treatment.

All subjects received a comparative neurological evaluation of nerve function on the day impressions and CBCT scans were obtained. This evaluation was repeated on the day of treatment, and again on the days each subcohort of 4 animals was euthanized. No test subjects (n = 12) demonstrated a reduced or differential lip sensitivity between mandibular and maxillary lip quadrants at any time point during the study. In addition, there were no adverse clinical observations noted with respect to weight loss, facial swelling, or signs of distress.

HISTOLOGICAL ASSESSMENT

This study found no histological evidence of mineralized tooth structure initiation or formation associated with treated 2nd molar tooth buds (#18 and #31) at any time point. This finding of complete molar agenesis was consistent for all study animals (n = 12) and all treated sites (n = 24).

476 At 7 days post ablation, histological assessment of 477 treated mandibular molar tooth buds (n = 8, teeth)478#18 and #31) demonstrated no viable tooth bud tissue 479 inside the targeted bony crypt. Complete tooth bud 480necrosis was observed. The presence of nonvital tooth 481 bud tissues within the bony crypt included predentin, 482 enamel organ, inner epithelium, dental papilla, pulp and/or dental lamina tissues. The thermally affected 483 484 sites were characterized by adjacent trabecular and 485 transmural cortical bone necrosis with early stage fi-486 broproliferative healing, trabecular bone healing, 487 and/or reparative marrow changes. Minimal neovascu-488 larization was involved with the thermocoagulated 489 treatment zone at this early stage. Healing changes 490 extended variably outside the bony crypt of the tooth 491 bud into tissues that were closely associated with the 492 thin wall of the bony crypt. These immediately adja-493 cent tissues were variably affected and included the 494 transmural cortical bone of the bony crypt, the 495 mandibular canal intima, distal mandibular foramen, 496 inferior alveolar nerve, lingual nerve and/or adjacent skeletal muscle. The overlying oral mucosa appeared 497 498 unaffected. Representative 7-day post ablation histol-499 ogy is shown in Figure 1.

500At 14 days post ablation, histological assessment of501treated mandibular 2nd molar tooth buds revealed502one tooth bud (subject #1507, tooth #31) that ap-503peared to have been partially ablated. This tooth bud504had viable tooth bud follicle, enamel organ, dental

FIGURE 1. Representative 7-day post ablation of treated mandibular 2nd molar #31. Histology shows complete hyperthermic tissue necrosis of the tooth bud within the boney crypt (between *arrows*). Hematoxylin and eosin staining; 20x magnification. Photo credit: TriAgenics, Inc.

Colby and Watson. 🔳 🗖 📕. J Oral Maxillofac Surg 2023.

papilla and pulpal tissues that constituted approximately 30% of original tooth bud volume. The remaining 70% of this tooth bud showed treatment-associated necrosis similar to other 14-day post treatment sites.

All other treated tooth buds at 14 days post ablation (n = 7) showed residual tooth bud necrosis. Nonvital remnant tooth bud structures included enamel organ, inner epithelium, dental papilla, pulp, and/or dental lamina within the bony crypt. Residual necrotic tissue without identifiable remnant tooth bud tissues was also observed. Bony crypt periosteal healing changes were present around the treated tooth bud with focal cortical bone thinning evident. Treated tooth bud sites were surrounded by primary stage fibroproliferative healing with variable myxoid features, adjacent trabecular bone necrosis, and new trabecular bone formation with reparative marrow changes and neovascularization. The zone of thermally affected tissue showed active healing extending outside the targeted bony crypt. This included tissues in the immediately adjacent mandibular canal, mandibular foramen, transmural cortical bone necrosis or defects, lingual nerve, and/or immediately adjacent lateral skeletal muscle. Portions of the adjacent inferior alveolar and lingual nerves showed evidence of hyperthermic exposure, while the overlying oral mucosa appeared unaffected. Representative 14-day post ablation histology is shown in Figure 2.

At 28 days post ablation, histological assessment of treated mandibular sites (n = 8, teeth #18 and #31) revealed no identifiable 2nd molar mandibular tooth bud tissues. Two treatment sites had small amounts of residual necrotic tissue without identifiable tooth bud remnant tissues. All treatment sites exhibited primary to secondary stage fibroproliferative healing. All treatment sites were surrounded by maturing trabecular

5

orint & web 4C/FPO

print & web 4C/FPO

& web 4C/FPO

print

FIGURE 2. Representative 14-day post ablation of treated mandibular 2nd molar #31. Histology shows complete hyperthermic tissue necrosis of the tooth bud and adjacent tissue within the boney crypt (between *arrows*). Hematoxylin and eosin staining; 20x magnification. Photo credit: TriAgenics, Inc.

Colby and Watson.
Colby and Watson.

new bone formation and reparative marrow. Minimal to mild chronic inflammation was present in the healing tissues. No acute inflammation or neovascularization was identified. The zone of active healing extended outside of the treated bony crypt. This included the immediately adjacent mandibular canal, transmural cortical bone, and/or inferior alveolar nerve. Associated periosteal healing changes were present, adjacent to the treated tooth bud site. Portions of the adjacent inferior alveolar nerves showed residual thermal effects alteration, while the overlying oral mucosa appeared unaffected. Representative 28-day mandibular post ablation histology is shown in Figure 3.

FIGURE 3. Representative 28-day post ablation of treated mandibular 2nd molar #31. Histology shows molar agenesis with complete removal of thermo-necrotic tissue (*arrow*) with nearly complete trabecular new bone formation encapsulating the former treatment site. Hematoxylin and eosin staining; 20x magnification. Photo credit: TriAgenics, Inc.

Colby and Watson. 🔳 🔳 . J Oral Maxillofac Surg 2023.

RADIOGRAPHIC ASSESSMENT OF HEALING

This study found no radiographic evidence of mineralized tooth structure initiation or formation associated with treated second molar tooth buds #18 and #31 (n = 24) at any time point. Radiographic healing assessment scores are graphically summarized in Figure 4.

Radiographic evidence of treatment effects was pronounced at 7 days post ablation. However, by 14 days post treatment, radiographic evidence of treatment was minimal. At 28-days post ablation, radiographic evidence of treatment effects was nonexistent. Healing assessment scores indicate active bone regeneration into the bony crypt of treated sites at 14 days post ablation and nearly complete bony ingrowth by 28 days post ablation. The absence of the bony crypt of targeted tooth buds was the only evidence of treatment at 28-days post ablation.

The radiographic healing assessment score at 7-days post ablation was 2.3 (n = 8), indicating that healing inside the bony crypt was minimal at this early stage. There were significant changes radiographically evident in the adjacent bone surrounding the tooth bud. Changes included radiolucent circumscribed rings approximately 1 mm from the bony crypt of the targeted tooth buds and several instances of bony sequestrum evident in axial, coronal, and sagittal views.

At 14 days post oblation, the composite radiographic healing score was 2.1, indicating active bone regeneration. There were no radiographically evident bony sequestrations or other indications of thermal damage. As noted above, one tooth bud (subject #1507, tooth #31) was identified as partially ablated during histologic assessment at 14-days post treatment. This tooth bud was radiographically indistinguishable from other treatment sites at this time point.

The aggregate radiographic healing assessment score at 28 days was 0.6, indicating that healing appeared complete. Radiographic imaging at 28-days post ablation showed little to no trace of the original bony crypt of the targeted tooth bud, as bone regeneration appeared to be complete or nearing completion. Representative radiographic preoperative imaging and the subsequent healing responses at 7-, 14-, and 28-days post ablation are shown in Figures 5-8 respectively.

In comparison, unablated maxillary control tooth buds at 28-days post ablation showed rapid expansion of the tooth bud bony crypt diameter with rapidly progressing mineralized tooth structure formation. Representative radiographic imaging of maxillary control tooth bud formation is shown in Figure 9.

Discussion

FLA 5.6.0 DTD ■ YJOMS60250_proof ■ 30 December 2022 ■ 5:05 am ■ CE

The purpose of this 28-day longitudinal characterization study was to determine if the healing response

COLBY AND WATSON

web 4C/FPO

ø

orint

4C/FPC

veb

print

FIGURE 4. Radiographic peer review assessment scoring at 7-, 14- and 28-days post ablation. A radiographic assessment score of 0 indicates no bony crypt is present and bone regeneration appears complete with no evidence of thermal damage of immediate adjacent tissues. *Colby and Watson.* **I I I**. *J Oral Maxillofac Surg 2023.*

following fully guided microwave ablation of 2nd molar tooth buds in juvenile pigs would result in the complete removal of targeted tooth bud tissues, molar agenesis, and no significant collateral tissue damage would be observed.

The specific aims of this characterization study were *1*) to determine the efficacy of fully guided TBA for inducing molar agenesis; *2*) to determine whether the postablation healing process resulted in complete tooth bud tissue removal; and *3*) to determine whether the thermal dosing strategy employed resulted in ablation volumes that appeared to be consistent with prescribed ablation volumes.

The study sample size was carefully determined. This dichotomous study compared 24 maxillary unablated tooth buds to 24 mandibular treated tooth buds. The control demonstrated a 100% incidence (95% confidence level) of tooth formation compared to 24 mandibular ablated sites that had 0% tooth formation. The resulting post hoc statistical power is greater than 99% for detecting a statistically significant difference in outcomes between the ablated tooth buds and unablated control tooth buds. Doubling or tripling the sample size would not have changed the findings of this study and would have been criticized as being unnecessarily large when undergoing the IACUC review.

FIGURE 5. Representative 1-day preoperative sagittal view of tooth bud #18 (at crosshairs). Note the close proximity of the distal margin of tooth #19's developing crown and the bony separation of less than 1 mm from the mandibular canal in the pig model. Photo credit: TriAgenics, Inc.

Colby and Watson.

FIGURE 6. Radiographic view of treated tooth bud #18 (at crosshairs) showing the zone of thermonecrosis at 7-days post ablation (subject animal #1504). The ablation zone diameter was 7.4 mm compared to a prescribed ablation zone of 7.2 mm. Note that the distal marginal ridge of the developing crown of tooth #19 is in contact with the zone of thermonecrosis. In humans, 2nd molar crown formation is completed prior to radiographic detection of third molar tooth buds. Photo credit: TriAgenics, Inc.

Colby and Watson.

orint & web 4C/FPO

FIGURE 7. Radiographic view of tooth bud #18 (at crosshairs) at 14-days post ablation. Treatment site shows active bone regeneration. Photo credit: TriAgenics, Inc.

Colby and Watson. 🔳 🔳 . J Oral Maxillofac Surg 2023.

KEY RESULTS

The results of this study confirm the hypothesis that fully guided TBA is effective at inducing complete molar agenesis. When thermal ablation of the entire tooth bud volume occurs, postablation healing processes appeared complete at 28 days post. Treated tooth bud tissues were resorbed and trabecular new bone formation was present in all treated sites. The ablation volumes prescribed for each subject were based on the maximum diameter of the bony crypt measured on CBCT scans. This thermal dosing strategy appeared to deliver targeted ablation volumes. Within the context of this animal model, there was no meaningful collateral tissue damage detected beyond the bony crypt of targeted tooth buds at 28 days.

This study found no radiographic or histological evidence of mineralized tooth structure formation associated with treated second molar tooth buds #18 and #31 (n = 24) at any time point.

FIGURE 8. Representative 28-day postablation radiograph of tooth bud #18 (at crosshairs). Bone regeneration appears nearly complete. Photo credit: TriAgenics, Inc.

Colby and Watson.
Colby and Watson.
Colby and Watson.
Colby and Watson.

FIGURE 9. Representative 28-day postoperative sagittal view of control tooth bud #15 (at crosshairs). The diameter of the rapidly developing bony crypt of the tooth bud is approximately 80% of the diameter of tooth #14. Photo credit: TriAgenics, Inc.

Colby and Watson.

At 28 days post ablation, radiographic and histological assessment of treated mandibular sites revealed no identifiable 2nd molar mandibular tooth bud tissues.

This longitudinal study utilized a split-mouth study design involving a single cohort of 12 pigs that were randomly assigned to 3 subcohorts. Each subcohort consisted of 4 animals. All study animals had mandibular second molar tooth buds #18 and #31 treated at 7 weeks of age. A refined version of the fully guided microwave ablation technique, described in the principal investigator's previously published ablation study, was used to perform the guided ablations in this study.⁴

Characterization of postablation healing processes was conducted by obtaining radiographic and histological characterization of treated mandibular tooth bud sites at 7, 14, and 28 days. Untreated, opposing maxillary 2nd molar tooth buds served as radiographic and histological controls.

The animal model developed for this research appeared to be well-suited for this investigation. The variety of pig used is known for its rapid growth. The predictable timing for development of the pigs' 2nd molar mineralized tooth structure greatly facilitated this longitudinal study. Investigators chose to ablate seven-week-old pigs because mineralized tooth structure for maxillary and mandibular 2nd molars first become radiographically detectable in the animals at 8 weeks of age.

The investigators used an energy dosing strategy that was verified in a separate GLP-level animal study. This energy dose strategy was verified to be the minimum necessary energy dose to result in complete removal of targeted tooth buds. This thermal dosing strategy is intended to create a zone of thermonecrosis approximately 1 mm beyond the maximum diameter of the bony crypt. The radiographic presence of circumscribed radiolucent rings at 7 days post ablation correlated well with the planned diameter of each print & web 4C/FPO

COLBY AND WATSON

4C/FPO

web

∞ŏ

orint

zone of ablation. Circumscribed radiolucent rings noted in axial, coronal, and sagittal views at 7 days post ablation indicate accurate positioning of the center of ablation in the center of the targeted tooth bud prior to delivering the energy dose. For example, when evaluating study animal 1504 (tooth bud #18), the maximum measured postablation bony crypt diameter was 5.2 mm, and the observed circumscribed radiolucent rings were approximately 7 mm in diameter at 7 days postoperation, as shown in Figure 6. The targeted tooth bud #18 was treated for 30 seconds, which is an energy dose that is expected to result in a 7.2 mm diameter zone of ablation.

Figure 10 shows TBA probe positioning in a surgical guide report. Figure 11 shows the 2 mm diameter TBA microablation probe completely seated into a TBA surgical guide used to ablate tooth bud #18. Figure 12 shows a subject's oral cavity with a small treatment wound immediately post ablation. There was no visual evidence of the treatment site at 7-days post ablation.

PRIOR STUDIES

Given the success of CT-guided microwave tumor ablation for treatment of patients with cancer, it is surprising to note how little research exists on guided TBA. Aside from the principal investigator's previously published TBA research and the present study, there are no other reports in the literature that explore this approach.

The use of CT-guided microwave tumor ablation supports the utility of the CT-guided approach used in this study. For example, Qi et al reported that 131 chest cavity tumors that were less than 5 mm from the diaphragm were treated using CT-guided microwave ablation, with a 1-year post treatment recurrence

FIGURE 10. Representative surgical guide report showing the planned tooth bud ablation probe surgical path. Note that the probe extends approximately 20 mm beyond the surgical guide to reach tooth bud #18 (between *arrows*). Photo credit: TriAgenics, Inc.

Colby and Watson.
Colby and Watson.
Colby and Watson.
Colby and Watson.

FIGURE 11. Intraoperative view of the tooth-supported surgical guide with the tooth bud ablation probe seated to its mechanical stop. Photo credit: TriAgenics, Inc.

Colby and Watson.

rate of 15% and no reported instances of severe complications.⁶

The overall histologic and radiographic findings of this study describe the expected course and timeline of tissue thermonecrosis induced through the process of thermocoagulation, where tissue temperatures do not exceed 100 °C. This is confusingly referred to as "cold ablation" and "low-temperature thermocoagulation,"

FIGURE 12. Immediate postoperative view of the 2 mm puncture wound (*arrow*) created by the TBA procedure. No puncture sites were detectable 7 days following TBA. Photo credit: TriAgenics, Inc. TBA, tooth bud ablation.

Colby and Watson.

print & web 4C/FPO

print & web 4C/FPO

10

which describes the hyperthermia treatment strategy 1009 1010 commonly used to remove cervical precancer lesions." 1011 The World health Organization recommends use of the phrase "thermal ablation" to describe hyperthermia treat-1012 ments that do not exceed 100 °C.⁸ In preparation for this 1013 study, great care went into developing thermal ablation 10141015 technology and an energy dosing strategy that limited tis-1016 sue temperatures to less than 100 °C. Doing so eliminates the possibility of tissue carbonization (ie, 1017 1018 charring), which occurs when tissue temperatures 1019 exceed 100 °C and water is physically driven out 1020 of tissues.

The unique technology used in this study was de-1021 signed to promote diffuse microwave energy tissue 1022 1023 penetration in a spherical pattern without exceeding 1024 100 °C around the ablation probe. The thermal dosing 1025 strategy employed a low-temperature thermal ablation 1026 approach with prescribed outer margins of the abla-1027 tion zone that were planned to reach temperatures of approximately 50 to 55 °C to achieve cell death 1028through thermocoagulation. The resulting microvas-1029 1030 cular thermocoagulation in the outermost zone of 1031 ablation cuts off nutrient and oxygen supply to cells, resulting in a delayed necrosis. Further increasing tis-1032 sue temperature results in undesirable physical 1033 1034 changes, such as water vaporization that leads to tissue 1035 desiccation and tissue carbonization (ie, charring). These heat-induced physical changes do not enhance 1036 cell death directly, but have the potential to interfere 1037 with energy distribution and post ablation healing re-1038 1039 sponses to the charred tissue remnants.⁹

LIMITATIONS

1040

1041

1042

1043 Regardless of the many physiological similarities 1044 pigs share with humans, differences in anatomy pre-1045 sent important limitations when using a pig model. 1046 For example, the surgical pathway to a 7-week-old 1047 porcine tooth buds is substantially longer compared to human 3M tooth buds. To reach the center of tar-1048 1049 geted 2nd molar tooth buds, the investigators chose surgical access through the anterior of the ramus. 1050 1051 While this was manageable, the probe extended 15 mil-1052 limeters or more beyond the base of the surgical guide.

As a result of this extended surgical path, the histol-1053 1054 ogy report at 14-days post ablation showed one treat-1055 ment site had 30% of its tooth bud tissue remaining 1056 vital, even though ablation volumes were prescribed to extend 1 mm beyond the bony crypt of the tooth 1057 1058 bud. No mineralized tooth bud structure was identi-1059 fied, but vital tooth bud tissue was present and this was likely introduced by positioning error. As would 1060 1061 be expected, the farther the ablation probe extends beyond the TBA guide, the greater the potential for 1062 1063 positioning variance. Based on measurements ob-1064 tained in mock TBA human clinical trials, investigators found that microablation probes extended no more than 6 mm beyond the surgical guide to reach third molar tooth buds #17 and #32 in human subjects aged 8 to 12. The surgical guide report in Figure 10 shows the TBA probe extending nearly 4 times farther (20 mm) beyond the TBA guide to reach the targeted 2nd molar.

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114 1115

1116

1117

1118

1119

1120

Another important limitation to this animal model has to do with the small physical separation between the bony crypt of targeted tooth buds and the subjects' adjacent tissue structures. Structure separation is extremely compact in 7-week-old pigs that weigh just 20 to 25 pounds at the time of treatment. Adjacent structures in pigs are within 1 to 2 mm of the bony crypt of the tooth bud compared to 5 mm or more in adolescent human subjects.

The energy dosing strategy used in this study was to deliver an energy dose that would result in a zone of ablation that would extend beyond the maximum measured diameter of the targeted bony crypt. Porcine tooth buds have an oval shape that is maximally elongated in the anterior/posterior dimension. That means that tissue structures adjacent to the narrowest portion of the oval tooth bud will be included in the prescribed zone of ablation. In pigs at this age, the walls of the 2nd molar bony crypt can be a millimeter or less in thickness. Because of the close proximity to these thin walls of the bony crypt, the mandibular foramen, the mandibular canal, the lingual nerve, and the lateral muscle attachments in this animal model were peripherally affected at the narrowest part of the targeted tooth bud. In contrast to humans, there is generally 5 mm or more of separation between the inferior border of the bony crypt of the third molar tooth bud and the superior aspect of the mandibular canal, making it physically impossible to induce nerve damage using the thermal dosing strategy used in this study.

Drawing conclusions based on interspecies testing carries a degree of uncertainty when extrapolating effects in humans. This model enabled a detailed description of the post ablation healing cascade that can be reasonably expected in humans. Pigs have been validated as a good comparative burn/healing model to human burn and healing. The postburn healing process in pigs and humans occur through physiologically similar phases (inflammation, proliferation, and remodelling) and timeframes.¹⁰

The fully guided TBA system deployed in this study was used in a fashion that will be consistent with its intended use in humans. The maximum diameters of targeted mandibular 2nd molar tooth buds in this pig model ranged from 6 to 7 mm. This diameter is similar to the maximum diameter of 7 to 8 mm found in human mandibular third molars at age 9 years, based on an internal study by the investigators that included

FLA 5.6.0 DTD ■ YJOMS60250_proof ■ 30 December 2022 ■ 5:05 am ■ CE

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159 1160

1161

1202

1121more than 1,100 CBCT scans obtained for orthodon-1122tic purposes.

A notable weakness of this study is that there was no attempt to obtain sequential CBCT images of the same subject animals in the 14- and 28-day subcohorts. Interim imaging was not obtained because of concerns associated with adverse anesthesia-related events, such as bronchial and pulmonary infections, which are secondary to repeated intubation of these study animals. A study that collects longitudinal imaging at 7-, 14-, and 28-day intervals on the same subject animals could provide more information on the postablation healing sequelae.

> The sample size of each subcohort was small (4 animals with 8 treated tooth buds).

Conclusion

The histological and radiographic findings of this study confirm the hypothesis that fully guided TBA is effective at inducing complete molar agenesis. When thermal ablation of the entire targeted tooth bud volume occurs, the postablation healing process results in tooth bud agenesis and trabecular new bone formation within 28 days. The thermal dosing strategy used in this study appears to deliver the prescribed ablation volumes and-within the context of this animal modelresulted in no meaningful collateral tissue damage.

The investigators have completed mock 3TBA human clinical trials and are in the process of seeking approval for first in-human 3TBA feasibility trials.

Acknowledgments

The authors would like to acknowledge Rachel N. Ecker, DDS, MS, for her contribution to the peer review of radiographic interpre-

tation during this study; James Coad, MD, pathologist at West Virginia University; and Sam Hendrix, DVM, owner of CARE Research. Leigh E. Colby is the principal founder of TriAgenics, Inc, which provided funding for this research.

References

- Vranckx M, Fieuws S, Jacobs R, Politis C. Prophylactic vs symptomatic third molar removal: Effects on patient postoperative morbidity. J Evid Based Dent Pract 21(3):101582. https://doi. org/10.1016/j.jebdp.2021.101582, 2021
- 2. Hounsome J, Pilkington G, Mahon J, et al. Prophylactic removal of impacted mandibular third molars: A systematic review and economic evaluation. Health Technol Assess 24(30):1-116. https://doi.org/10.3310/hta24300, 2020
- D'Angeli G, Zara F, Vozza I, D'Angeli FM, Sfasciotti GL. The evaluation of further complications after the extraction of the third molar germ: A pilot study in paediatric dentistry. Healthcare (Basel) 9(2):121. https://doi.org/10.3390/healthcare9020121, 2021
- Colby LE. Fully guided third molar tooth bud ablation in pigs. J Oral Maxillofac Surg 80:1522-1533. https://doi.org/10.1016/j. joms.2022.05.006, 2022
- 5. Dai X, Lian X, Wang G, et al. Mapping the amelogenin protein expression during porcine molar crown development. Ann Anat 234:151665. https://doi.org/10.1016/j.aanat.2020.151665, 2021
- 6. Qi H, Zhang H, Wan C, Xie L, Song Z, Fan W. CT-guided microwave ablation through the lungs for treating liver tumors near the diaphragm. Oncotarget 8(45):79270-79278, 2017
- 7. Duan L, Du H, Belinson JL, et al. Thermocoagulation versus cryotherapy for the treatment of cervical precancers. J Obstet Gynaecol Res 47(1):279–286. https://doi.org/10.1111/jog.14520, 2021
- World Health Organization. WHO Guidelines for the Use of Thermal Ablation for Cervical Pre-cancer Lesions. World Health Organization, 2019. https://apps.who.int/iris/handle/10665/ 329299
- Lubner MG, Brace CL, Hinshaw JL, Lee FT Jr. Microwave tumor ablation: Mechanism of action, clinical results and devices. J Vasc Interv Radiol 21(8 Suppl):S192–S203. https://doi.org/10. 1016/j.jvir.2010.04.007, 2010
- Abdullahi A, Amini-Nik S, Jeschke MG. Animal models in burn research. Cell Mol Life Sci 71(17):3241-3255. https://doi.org/ 10.1007/s00018-014-1612-5, 2014